Eisenstein Cohomology and p - adic L - Functions

نویسنده

  • Glenn Stevens
چکیده

§0. Introduction. In this paper, we define the module D̃(V ) of distributions with rational poles on a finite dimensional rational vector space a V . This is an infinite dimensional vector space over Q endowed with a natural action of the reductive group GV := Aut(V ). Indeed, this action extends to a natural action of the adelic group GV (AQ). For each prime p, we define we define the notion of p-adic continuity of elements of D̃(V ) and explain how p-adically continuous distributions with rational poles give rise to p-adic L-functions. In section 2, we construct a special element ξ ∈ D̃(Q), and explain its connection to the Kubota-Leopoldt p-adic L-functions. The key feature of our construction is that ξ is a global distribution, which is p-adically continuous for every prime p and therefore gives rise to p-adic L-functions for every p. In other words, we obtain a global object that specializes to the p-adic Kubota-Leopoldt p-adic L-functions. In section 3, we extend the constructions of section 2 and construct a GL(n)-symbol ψn for every n ≥ 1. When n ≥ 1, ψn is a GLn(Q)-invariant linear map from the (n− 1)dimensional cohomology of the Borel-Serre boundary of the symmetric space for GL(n) to D̃(Qn). When n = 1, ψ1 is determined by its value on the fundamental class, and this value is just the Kubota-Leopoldt distribution. When n = 2, we show that the coboundary of ψ2 vanishes identically and therefore gives rise to a classical modular symbol over GL2(Q). In section 4 (not yet included), we will explain how to associate p-adic L-functions to ξ2 and explain how these can be viewed as p-adic L-functions attached to Eisenstein series over the weight space. We will also use ξ2 to construct explicit overconvergent modular symbols, as defined by R. Pollack and G. Stevens. These are modular symbols taking values in the space of rigid analytic distributions on the p-adic upper half-plane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eisenstein Congruence on Unitary Groups and Iwasawa Main Conjectures for Cm Fields

Introduction 1 1. Notation and conventions 8 2. Shimura varieties for unitary groups 13 3. Modular forms on unitary groups 23 4. Hida theory for unitary groups 36 5. Ordinary p-adic Eisenstein series on U(2, 1) 52 6. Constant terms of the p-adic Eisenstein series 68 7. Eisenstein ideal and p-adic L-functions 76 8. Application to the main conjecture for CM fields 93 Acknowledgments 107 Reference...

متن کامل

p-ADIC L-FUNCTIONS FOR ORDINARY FAMILIES ON SYMPLECTIC GROUPS

We construct the p-adic standard L-functions for ordinary families of Hecke eigensystems of the symplectic group Sp(2n)/Q using the doubling method. We explain a clear and simple strategy of choosing the local sections for the Siegel Eisenstein series on the doubling group Sp(4n)/Q, which guarantees the nonvanishing of local zeta integrals and allows us to p-adically interpolate the restriction...

متن کامل

ALGEBRAIC THETA FUNCTIONS AND THE p-ADIC INTERPOLATION OF EISENSTEIN-KRONECKER NUMBERS

We study the properties of Eisenstein-Kronecker numbers, which are related to special values of Hecke L-function of imaginary quadratic fields. We prove that the generating function of these numbers is a reduced (normalized or canonical in some literature) theta function associated to the Poincaré bundle of an elliptic curve. We introduce general methods to study the algebraic and p-adic proper...

متن کامل

ALGEBRAIC THETA FUNCTIONS AND p-ADIC INTERPOLATION OF EISENSTEIN-KRONECKER NUMBERS

We study the properties of Eisenstein-Kronecker numbers, which are related to special values of Hecke L-function of imaginary quadratic fields. We prove that the generating function of these numbers is a reduced (normalized or canonical in some literature) theta function associated to the Poincaré bundle of an elliptic curve. We introduce general methods to study the algebraic and p-adic proper...

متن کامل

On the Eisenstein ideal for imaginary quadratic fields

For certain algebraic Hecke characters χ of an imaginary quadratic field F we define an Eisenstein ideal in a p-adic Hecke algebra acting on cuspidal automorphic forms of GL2/F . By finding congruences between Eisenstein cohomology classes (in the sense of G. Harder) and cuspidal classes we prove a lower bound for the index of the Eisenstein ideal in the Hecke algebra in terms of the special L-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005